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Abstract

The absolute and convective instability of Von-Kármán rotating disk flow with a temperature dependence viscosity

of the form l 0 = l1/[1 + �(T � T1)/(Tx � T1)] is investigated. With the use of a spectral method, the linear stability

equations are formulated and then solved numerically. Solutions have been obtained for various values of the param-

eter � which controls the temperature dependence of viscosity. It is established the stability of the flow is particularly

sensitive to changes in viscosity and even for small positive values of � the flow is much more unstable compared to

the constant viscosity case.

� 2004 Published by Elsevier Ltd.
1. Introduction

Rotating disk flow has been at the centre of a large

number of theoretical and experimental studies in recent

years. Flows with heat transfer have significant industrial

applications. Von-Kármán [1] was the first to formulate

the problem where he showed that the Navier–Stokes

equations for steady incompressible viscous flow of an

infinite rotating disk in a rigidly rotating fluid can be re-

duced to a set of ordinary differential equations which can

then be solved numerically. Using a two series expansion,

Cochran [2] improved the accuracy of numerical solu-

tions and demonstrated that the flow throws the fluid

near the disk radially outwards which consequently intro-

duces an axial flow towards the disk to maintain continu-
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ity. Related flows of interest are those of Bödewadt [3]

where the fluid is rotating but the disk is stationary,

and that of Rogers and Lance [4] where the fluid is rotat-

ing with angular velocity different from that of rotating

disk. Sparrow and Gregg [5] examined the heat transfer

from a rotating disk to a fluid for an arbitrary Prandtl

number. Taking the temperature difference between the

rotating disk surface and the stationary fluid to vary as

a power of the disk radius, Hartnett [6] investigated the

effect of surface temperature variation on the heat trans-

fer from the disk to the fluid.

All of the studies mentioned above were confined to

the assumption of constant viscosity. But with tempera-

ture changes, viscosity can also undergo a significant

change. To predict the behaviour of a flow properly, it

is therefore necessary to consider viscosity variation

for incompressible fluids. When the viscosity variation

on temperature is taken into account, Gary et al. [7],

Mehta and Sood [8] demonstrated substantial change
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Nomenclature

(r 0,h,z 0) dimensional cylindrical polar coordinates

(r,h,z) non-dimensional cylindrical polar coor-

dinates

t 0 dimensional time

t non-dimensional time

U 0 dimensional velocity

(u,v,w) non-dimensional velocity components

p0 dimensional pressure

p non-dimensional pressure

l 0 dimensional viscosity

l Non-dimensional viscosity

l1 free-stream viscosity

q1 free-stream density

T 0 dimensional temperature

T non-dimensional temperature

Tw temperature on surface of disk

T1 free-stream temperature

Cp specific heat constant

j thermal conductivity

X angular speed of disk

L typical radial length scale

Uc = LX velocity scale

m = l1/q1 kinematic viscosity

Re = UcL/m Reynolds number

R ¼ R1=2
e Reynolds number based on displacement

thickness

(F,G,H),P,S self-similar profiles for the velocity,

pressure and temperature

Z = zR boundary layer variable

Pr Prandtl number

h1 outflow from boundary layer

ð�u;�v; �wÞ; �p; T velocity, pressure and temperature

perturbations

ð~u;~v; ~wÞ; ~p; eT normal mode velocity, pressure and

temperature perturbations

a = ai + iar complex wavenumber in radial direction

b azimuthal wavenumber

x = xr + ixi complex frequency
�x ¼ x=R
X = rR multiple-scaling coordinate

k2 = a2 + b2

�a ¼ a � i=R
c = tan�1(b/ar) wave-angle
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in flow characteristics compared to the constant viscos-

ity assumption. Kafoussias and Williams [9], Kafoussias

and Rees [10], and Keller [11] studied the effects of tem-

perature dependent viscosity on mixed and natural con-

vection flows by considering the viscosity to vary as

linear function of temperature or proportional to a lin-

ear function of temperature.

Hossain et al. [12] investigated the flow and heat trans-

fer along a uniformly heated and impulsively rotating

disk in a stationary fluid subjected to a transverse mag-

netic field with temperature dependent viscosity. The flow

considered is laminar with viscosity l 0 = l1/

[1 + �(T � T1)/(Tx � T1)] and it is shown that heat

transfer and surface friction will be affected by the flow

in the viscous sub-layer close to the disk surface. Wall

and Wilson [13] demonstrate that for monotonically

decreasing viscosity across the channel, the flow is desta-

bilized by heating. Pinarbasi and Ozalp [14] studied the

effect of temperature-dependent and shear-thining viscos-

ity of a non-Newtonian fluid on the stability of a channel

flow. Their result shows that the formation of shear layers

can only take place in solutions where the viscosity de-

creases sufficiently quickly as temperature increases.

Shevtsova et al. [15] examined the stability of a liquid

bridge consisting of a fluid volume held between two dif-

ferentially heated concentric disks separated by a distance

when the dependence of viscosity on temperature is taken

into account. The existence of standing and travelling

waves is discussed. The flow of a viscous incompressible
fluid of temperature dependent viscosity past a permeable

wedge has been considered by Hossain et al. [16]. Chang

and Chan [17] discussed the linear stability of mixed con-

vection flow of two immiscible fluids with temperature

dependent viscosity. The linear stability of a ridge of fluid

subjected to a jet of air with temperature dependent vis-

cosity has recently been investigated by Mckinley and

Wilson [18]. Using a finite difference method, Hossain

et al. [19] explored the effect of a temperature dependent

viscosity on natural convection flow of a viscous incom-

pressible fluid from a vertical wavy surface. The influence

of temperature dependent viscosity on the flow along a

channel with porous wall was recently analyzed by Ferro

and Gnavi [20]. However, investigations relating to the

stability of a rotating disk with temperature dependent

viscosity have not been carried out as yet, which therefore

is one of the aims of the current work.

In this paper, we shall study the linear absolute and

convective instability of Von-Kármán rotating disk flow

by taking the viscosity to be temperature dependent. The

viscosity of the fluid is taken as an inverse linear func-

tion of temperature. The viscosity coefficient is assumed

to be of the form l 0 = l1/[1 + � (T � T1)/(Tx � T1)]

see Ling and Dybbs [21]. For liquids such as water

and crude oil, this function is in excellent agreement with

experimental data. The traditional linear stability equa-

tions are formulated. Then, the branch points where the

group velocity ox
oa tends to zero are searched for in the

complex wavenumber, a, and complex frequency, x,
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planes. The equations are solved numerically by employ-

ing a spectral method for different values of the param-

eter �. When � is equal to zero, our solution is the same

as presented by Turkyilmazoglu and Gajjar [22] (hereaf-

ter referred to as TG) and Lingwood [23]. As the value

of the parameter � is increased, we show that the flow

becomes more unstable.

This paper is organized as follows: Section 2 is de-

voted to the description of the problem and governing

equations of the flow. The results are presented in Sec-

tions 3 and 3.1 for the basic flow, Section 3.2 for linear

stability, Section 3.3 for absolute instability. Our conclu-

sions follow in Section 4.
2. The basic equations

2.1. Governing equations of the flow

We take an infinite planar disk rotating with uniform

angular velocity X about the vertical axis z, which passes

through the centre of the disk. We consider the three

dimensional boundary layer flow of an incompressible

fluid. The basic equations in cylindrical polar coordi-

nates (r 0,h,z 0) and corresponding velocity U 0 governing

the viscous fluid flow are:

q1
oU0

ot0
þ ðU0 � rÞU0

� �
¼ �rp0 þ rðl0rU0Þ; ð1aÞ

r �U0 ¼ 0; ð1bÞ

q1Cp
oT 0

ot0
þ ðU0:rÞT 0

� �
¼ kr2T 0 ð1cÞ

Here, T 0 is the temperature, Cp is the specific heat at

constant pressure, q1 the fluid density, j the thermal

conductivity of the fluid, p 0 the pressure, and l 0 the vis-

cosity of the fluid. In addition, we assume that the vis-

cosity depends on temperature, as l 0 = l1/[I + e
(T 0 � T1)/(Tx � T1)], where � is termed the viscosity

variation parameter, Tx denotes the uniform tempera-

ture at the disk surface and T1 is the temperature of

the ambient fluid. All other material properties such as

the fluid density q1 and the thermal conductivity j of the

fluid are treated as constants. The Navier–Stokes equa-

tions are non-dimensionalized with respect to a length

scale L, velocity scale Uc = LX, time scale L/UC and

pressure scale q1U 2
c . This leads to a global Reynolds

number Re = UcL/m = R2 where R is the Reynolds num-

ber based on the displacement thickness ðm=XÞ
1
2. Thus,

relative to non-dimensional cylindrical polar coordi-

nates (r,h,z) which rotate with the disk, and correspond-

ing velocities (u,v,w) the full time-dependent, unsteady

Navier–Stokes equations governing the viscous fluid

flow are the usual momentum and the continuity equa-

tions given as follows:
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where l = 1/[1 + eT] is the non-dimensional viscosity.

Here the temperature has been non-dimensionalized as

T 0 = T1 + (Tw � T1)T. In this analysis the fluid is

assumed to lie in the z P 0 semi-infinite space. In the

above equations, streamline curvature effects as well as

the effects stemming from the Coriolis force are present.

2.2. The mean flow equations

To obtain similarity solutions of the governing equa-

tions, these are first converted into a convenient form

using appropriate transformations. The boundary layer

coordinate Z, which is of order O(1), is defined as

Z = zR. Considering this, we can introduce the following

mean flow variables:

u ¼ rF ðZÞ; v ¼ rGðZÞ; w ¼ 1

R
HðZÞ; ð3aÞ

p ¼ 1

R2
PðZÞ; T ¼ SðZÞ: ð3bÞ

Substituting (3) into (2) yields the following non-

dimensional ordinary differential equations for the mean

flow:
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ð1 þ eSÞF 00 � eS0F 0 � ð1 þ eSÞ2½F 2 � ðGþ 1Þ2 þ F 0H � ¼ 0;

ð4aÞ

ð1 þ eSÞG00 � eS 0G0 � ð1 þ eSÞ2½2F ðGþ 1Þ þ G0H � ¼ 0;

ð4bÞ

S00 � P rS
0H ¼ 0; ð4cÞ

2F þ H 0 ¼ 0; ð4dÞ

where primes denote differentiation with respect to Z,

and Pr = l1Cp/j is the Prandtl number. The boundary

conditions are

F ¼ 0; G ¼ 0; H ¼ 0; S ¼ 1 at Z ¼ 0; ð5aÞ

F ¼ 0; G ¼ �1; S ¼ 0; as Z ! 1: ð5bÞ

In addition the behaviour of the solutions for large Z

suggest that H ! h1, which implies a constant vertical

velocity of the rotating fluid in the far-field above the

disk. We solve the set of ordinary differential equations

(4) subject to boundary conditions (5) with Prandtl num-

ber equal to 0.72 by employing a finite difference method

and the Numerical Algorithms Group (NAG) library

routine D02RAF.

2.3. Linear stability equations

We are here interested in perturbation solution of

Von-Kármán�s self-similarity velocity profiles. The

instantaneous non-dimensionalized velocity components

imposed on the basic steady flow are u, v, w, and the

pressure component p and temperature T are such that

uðr; h; z; tÞ ¼ rF ðZÞ þ �uðr; h; z; tÞ;
Fig. 1. A schematic of the flow configuration showing the non-

dimensional coordinates (r,h,z) and corresponding velocities

(u,v,w).
vðr; h; z; tÞ ¼ rGðZÞ þ �vðr; h; z; tÞ;

wðr; h; z; tÞ ¼ 1

R
HðZÞ þ �wðr; h; z; tÞ;

pðr; h; z; tÞ ¼ 1

R2
P ðZÞ þ �pðr; h; z; tÞ;

T ðr; h; z; tÞ ¼ SðZÞ þ T ðr; h; z; tÞ;

where �u, �v, �w, T , and �p are small perturbation quantities.

The disturbance components of the above system are

determined by solving the form of the Navier–Stokes

equations that result from substituting these quantities

into (2), and subtracting out the mean-flow equations.

We linearize the equations for small perturbations. We

find that the linearized Navier–Stokes operator has coef-

ficients independent of h and hence the disturbances can

be decomposed into a normal mode form proportional

to eiR(bh � xt). Such an approximation leads the distur-

bances to be wave-like, separable in h and t. Conse-

quently, the perturbations may be assumed to be of

the form

ð�u;�v; �w; �p; �T Þ ¼ ð~u½r; Z�;~v½r; z�; ~w½r; z�;

~p½r; Z�; eT ½r; Z�eiRðbh�xtÞ þ c:c:;

where b is the wavenumber in the azimuthal direction

and x the scaled frequency of the wave propagating in

the disturbance wave direction. Here, c.c. denotes the

complex conjugate.

The separation in h and t simplifies the linear system

of equations. However, no such simplification is possible

as far as the r dependence is concerned (except in the

limit as R ! 1). The full linearized partial differential

system has to be solved subject to suitable initial condi-

tions to determine the stability of the flow. As in TG, we

consider next the limit R ! 1 and introduce the multi-

ple-scale X = Rr which is the appropriate scale on which

the disturbances develop. After allowing for the multi-

ple-scale replacement of o
or by

R
o

oX
þ o

or
;

and keeping only terms of O(1/R), the following linear

system is obtained
Table 1

Values of h1, F 0(0), G 0(0), and S 0(0) corresponding to different

values of �

� h1 F 0(0) G 0(0) S 0(0)

0 �0.88447 0.5102 �0.6159 �0.3285

2 �0.59503 0.8833 �1.1097 �0.2866

4 �0.44875 1.1408 �1.4213 �0.2494

6 �0.3682 1.3501 �1.6708 �0.2216



Fig. 2. Basic flow similarity profiles, (a) radial component F(Z), (b) azimuthal G(Z), (c) axial H(Z), and (d) temperature profile S(Z)

against Z for different values of �.
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H þ eS0
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o~u
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þ F ~u� 2ðGþ 1Þ~v
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þ� 1
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2
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!eT # ¼ � 1

R
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oX

þ ibG~wþ o~p
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R
H þ eS0
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oZ
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Fig. 3. Plots of the effective mean velocity ðF 0 cos h þ G0 sin hÞ are sh

(d) � = 6.
o~u
oX

þ 1

Rr
~uþ ib

r
~vþ o~w

oZ
¼ � 1

R
o~u
or

: ð6eÞ

The operator r2
2 is defined by

r2
2 ¼

o2

oX 2
þ o2

oZ2
� b2

r2
:

The basic flow is non-parallel in view of the terms on

the right hand side of equations (6). Since these terms are

of the order O(1/R), when R !1 and ia replaces o
oX , we

get Rayleigh�s equation. The full normal mode decompo-

sition becomes valid only in this limit. Replacing o
oX by ia,

setting r = 1, and neglecting terms of order O(1/R) on the
own for different values of h: (a) � = 0, (b) � = 2, (c) � = 4, and



Fig. 4. Neutral stability curves in (a) (R,a), (b) (R,b) wavenumber, and (c) (R,c) wave-angle planes for stationary waves, x = 0, and

different values of �.

Table 2

The values of the critical Reynolds number R, wavenumbers a
and b, and wave angle c corresponding to different values of �

on the upper branch for stationary waves with x = 0

� R a b c

0 287.2 0.3835 0.07735 11.40

0.01 255.0 0.3985 0.0800 11.36

0.015 239.1 0.4085 0.0817 11.31

0.02 222.7 0.4165 0.0829 11.26

0.025 205.7 0.4274 0.0844 11.18

0.03 187.7 0.4361 0.0853 11.07

Table 3

The values of the critical Reynolds number R, wavenumbers a
and b, and wave angle c corresponding to different values of �

on the lower branch for stationary waves with x = 0

� R a b c

0 451.4 0.1310 0.04645 19.50

0.01 253.4 0.1375 0.05515 21.85

0.015 155.1 0.1564 0.0661 22.91

0.02 82.6 0.1866 0.08414 24.27

0.025 38.0 0.2341 0.1159 26.35

0.03 15.1 0.2919 0.1738 30.77
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right hand side of (6), the reduced linear system of equa-

tions are obtained. By replacing ~u, ~v, ~w, ~p, and eT by

u,v,w,p, and T, respectively, we have (Fig. 1)

1

ð1 þ eSÞ u
00 � H þ eS0

ð1 þ eSÞ2

" #
u0

� iRðaF þ bG� �xÞ þ k2

ð1 þ eSÞ þ F
� �

u

þ 2ðGþ 1Þv� RF 0w� iaRp �
eF 0T 0

ð1 þ eSÞ2

þ 2e2S0F 0

ð1 þ eSÞ3
� eF 00

ð1 þ eS2

" #
T ¼ 0; ð7aÞ
Fig. 5. Neutral stability curves in (a) (R,a), (b) (R,b), and (c) (R,c) wa

of �.
1

ð1 þ eSÞ v
00 � H þ eS 0

ð1 þ eSÞ2

" #
v0

� iRðaF þ bG� �xÞ þ k2

ð1 þ eSÞ þ F
� �

v

� 2ðGþ 1Þv� RG0w� ibRp �
eG0T 0

ð1 þ eSÞ2

þ 2e2S0G0

ð1 þ eSÞ3
� eG00

ð1 þ eSÞ2

" #
T ¼ 0; ð7bÞ
venumber and wave-angle planes for x = 4 and different values
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1

ð1 þ eSÞw
00 � H þ eS0

ð1 þ eSÞ2

" #
w0

� iRðaF þ bG� �xÞ þ k2

ð1 þ eSÞ þ H 0
� �

w� Rp0 ¼ 0;

ð7cÞ

T 00 � P rHT 0 � ½iRPrðaF þ bG� �xÞ þ k2�T � RS 0P rx ¼ 0;

ð7dÞ

i�auþ ibvþ w0 ¼ 0; ð7eÞ
where k2 = a2 + b2, �a ¼ a � i
R, and �x ¼ x=R. The bound-

ary conditions for this set of equations are

u = v = w = T = 0 at Z = 0, and Z = 1.
Fig. 6. Neutral stability curves in (a) (R,a), (b) (R,b), and (c) (R,c) wav

of �.
3. Results

3.1. Mean flow results

We have solved the basic flow equations (4) by

employing a finite difference method and the Numerical

Algorithms Group (NAG) library routine D02RAF for

F(Z), G(Z), H(Z), and S(Z). The values of h1, F 0(0),

G 0(0), and S 0(0) corresponding to different values of �
are presented in Table 1. It is known that the viscosity

of liquids decreases with increasing temperature. There-

fore, an increase in viscosity variation parameter � gives

rise to a decrease in viscosity profile since � signifies the

sensitivity of the liquid to temperature. In Fig. 2(a), we

plot the computed values of F versus Z for different val-

ues of �. Fig. 2(a) reveals that an increase in the value of

� causes the point of maximum radial velocity to move
enumber and wave-angle planes for x = 7.9 and different values



Fig. 7. Neutral stability curves in (a) (R,a), (b) (R,b) wavenumber, and (c) (R,c) wave-angle planes for x = 10 and different values of �.

Table 4

The values of the critical Reynolds number R, wavenumbers a
and b, and wave angle c corresponding to different values of �

on the lower branch for travelling waves with x = 4

� R a b c

0 297.6 0.4030 0.0563 7.9

0.005 283.8 0.4100 0.05642 7.8

0.01 269.7 0.4210 0.05698 7.7

0.015 255.4 0.4300 0.05698 7.5

0.02 241.0 0.4443 0.05756 7.3

Table 5

The values of the critical Reynolds number R, wavenumbers a
and b, and wave angle c corresponding to different values of �

on the lower branch for travelling waves with x = 4

� R a b c

0 175.2 0.1537 0.01273 4.73

0.005 76.8 0.1759 �0.02384 �7.71

0.01 35.3 0.2307 �0.09261 �21.87

0.015 30.4 0.3041 �0.1644 �28.40

0.02 16.1 0.3782 �0.2358 �31.94
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closer to the surface of the disk. The velocity profiles G

in the azimuthal direction versus Z for different values of

� are shown in Fig. 2(b). The velocity profiles in the axial
direction for different values of � are plotted in Fig. 2(c).

It is clear that increasing � decreases the magnitude of

the outflow at the edge of the boundary layer. Overall



Table 6

The values of the critical Reynolds number R, wavenumbers a
and b, and wave angle c corresponding to different values of �

on the upper branch for travelling waves with x = 7.9

� R a b c

0 316.5 0.4210 0.0391 5.30

0.01 291.8 0.4422 0.03926 5.07

0.015 279.4 0.4547 0.03923 4.93

0.02 267.0 0.4659 0.03872 4.75

Table 7

The values of the critical Reynolds number R, wavenumbers a
and b, and wave angle c corresponding to different values of �

on the lower branch for travelling waves with x = 7.9

� R a b c

0 64.4 0.2773 �0.1064 �21.0

0.01 40.4 0.4211 �0.1772 �22.86

0.015 34.3 0.4981 �0.2111 �22.96

0.02 29.9 0.5812 �0.2442 �22.79

1032 H.A. Jasmine, J.S.B. Gajjar / International Journal of Heat and Mass Transfer 48 (2005) 1022–1037
Fig. 2(a)–(c) suggest that increasing � makes the bound-

ary layer �thinner� in some sense. In Fig. 2(d), we sketch

the computed values of temperature profile S versus Z

for different values of �. The temperature profiles are

much fuller for increasing values of the viscosity varia-

tion parameter �. Our results for the mean flow agree

well with the results obtained by Hossain et al. [12].

In Fig. 3, we plot a combination of F 0 cos h þ G0 sin h
versus Zfor different values of h with � = 0,2,4,6, respec-

tively. The quantity F 0 cos h þ G0 sin h is the effective
Table 9

The values of the critical Reynolds number R, wavenumbers a
and b, and wave angle c corresponding to different values of �

on the lower branch for travelling waves with x = 10

� R a b c

0 68.7 0.3358 �0.1288 �20.98

0.01 49.8 0.4781 �0.1836 �21.01

0.015 42.8 0.5561 �0.2096 �20.65

0.02 38.3 0.6401 �0.2347 �20.14

Table 8

The values of the critical Reynolds number R, wavenumbers a
and b, and wave angle c corresponding to different values of �

on the upper branch for travelling waves with x = 10

� R a b c

0 329.3 0.428 0.0313 4.10

0.01 306.3 0.4523 0.0315 3.98

0.015 294.8 0.4633 0.0311 3.84

0.02 283.5 0.4768 0.0309 3.71
mean velocity at an angle h and is important in the sta-

bility context. Even small changes in � causes considera-

ble change to this profile as compared to the � = 0 case,

and this suggests that the stability of the mean flow will

be particularly sensitive to changes in �.

3.2. Stability results

Having discussed the properties of the mean flow, we

next analyze the stability of this flow. Two types of

instability waves exist in the rotating disk boundary

layer flow. The first one is the inviscid-type or the upper

branch and the other one is the viscous-type or the lower

branch. We have studied these two distinct branches for

several values of the viscosity variation parameter � with

the Prandtl number taken equal to 0.72. First we con-

sider stationary waves, i.e. disturbances with x = 0. Sta-

bility computations reported here have been done by

using a spectral method (similar to that described in

TG). The wave-angle c of a disturbance is defined as

c = tan�1(b/ar). In Fig. 4, we display the neutral curves

for stationary disturbances in the (R,a), (R,b), and (R,c)

planes for several values of �. The computed values of

the critical Reynolds number R, the corresponding

wavenumbers a and b, and wave-angle c are tabulated

in Table 2 for the upper branch and Table 3 for the

lower branch. The data shows that an increase in the

value of � leads to a decrease in the values of the critical

Reynolds numbers and wave-angle. Fig. 4(c) shows that

the range of wave-angle decreases for the upper branch

while increases considerably for the lower branch com-

pared with � = 0 case. Fig. 4 also demonstrate that with

increasing �, the curves shift to the left and the flows be-

come more unstable. For fixed Reynolds numbers, the

band of unstable wavenumbers increases and the range

of unstable wave-angles is increased considerably from

the � = 0 case. The pattern of behaviour here may be ex-

plained by the behaviour of the effective mean velocity

profile for increasing � with the point of zero shear stress

moving closer to the wall. The latter influences the

dynamics on the lower-branch of the instability curve

as shown by Hall [24].

Next, we consider travelling waves i.e. disturbances

with non-zero values of frequency x. The marginal

curves for convective instability for non-stationary

waves in the (R,a), (R,b), and (R,c) plans are shown

in Figs. 5–7 for several positive non-dimensional fre-

quencies and for several values of �. Fig. 5 shows the

marginal curves for convective instability when x = 4

and different values of � are taken. The computed values

of R, a, b and c are presented in Table 4 for the upper

branch and Table 5 for the lower branch. For x = 7.9,

Fig. 6 displays the neutral stability curves for different

values of �. The computed values of R, a, b and c are

tabulated in Table 6 for the upper branch and Table 7

for the lower. The critical values of R and c decrease
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while a shows increase as � is increased. Fig. 7 exhibits

the neutral stability curves for x = 10 and for different

values of �. Critical values are tabulated in Table 8 for

the upper branch and Table 9 for the lower branch.

The pattern of graphs is the same as that for x = 7.9.

Our results indicate that as � increases, the marginal sta-

bility curves shift to the left, and the critical Reynolds

number Rdecreases, thus indicating a more unstable

flow situation.

The wave-angle stability curves are depicted in Figs.

5(c), 6(c), 7(c) for x = 4, 7.9, and 10, respectively. These

figures show that a broad range of negative wave-angle

occurs for the lower branch as � increases. Increases in

� and frequency x cause bifurcation on the upper

branch. Whereas for the stationary waves the lower-
Fig. 8. Distribution of the spatial amplication rate of stationary wave

angle (c) (ai,c) for R = 600 and different values of �.
branch is affected significantly with increasing �, for

the non-stationary waves the upper-branch is more af-

fected, particularly for large Reynolds numbers. The

upper-branch behaviour is governed by the dynamics

of the critical layers where the mean flow velocity is

equal to the phase velocity. With the flow velocity being

concentrated closer to the wall for increasing �, this is

therefore likely to affect more the lower frequency waves

rather than the higher frequency waves, as the critical

layer positions will move closer to the wall. This behav-

iour is consistent with that seen in Fig. 5 for x = 4 and

Figs. 6 and 7 for the higher frequencies.

We have also plotted the growth rate curves for se-

lected Reynolds numbers. Fig. 8 displays the distribu-

tion of the spatial amplification rate of zero-frequency
s as a function of wavenumbers (a) (ai,ar), (b) (ai,b), and wave-
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as a function of wavenumbers (ai,ar), (ai,b), and wave-

angle (ai,c) when R = 600, for several values of �. Fig.

8(c) gives the orientations of the stationary waves versus

the spatial growth rate. On the lower branch, the grow-

ing waves originate almost from the same place at a

wave-angle. On the upper branch, amplifying waves

originate at a larger wave-angle as Rincreases. With �
varying from zero to 0.03, the growth rates of travelling

waves with a frequency of 10 are shown in Fig. 9 for

R = 600. These graphs suggest that travelling waves,

for � non-zero have smaller growth rates than stationary

waves, a conclusion quite different from that for the con-

stant viscosity case. Also, due to viscous mode instability

(lower branch) at lower Reynolds numbers, the eigen-

values ranges separate into two distinct regions, which
Fig. 9. Distribution of the spatial amplication rate of travelling waves

and wave-angle (c) (ai,c) for R = 600 and different values of �.
is characteristic of non-zero frequency waves of the

rotating disk flow. The wave orientation for travelling

waves is shown in Fig. 9(c). For � = 0, the values we ob-

tain agree quite well with those derived earlier by TG.

3.3. Absolute instability results

Following the procedure developed by TG, we have

computed the branch points of the flow for different val-

ues of viscosity variation parameter � with Prandtl num-

ber taken equal to 0.72. Our results show that the

rotating disk boundary layer flow with temperature-

dependent viscosity exhibits both convective and abso-

lute instabilities in some regions of the flow. Using the

Newton–Raphson search procedure (see TG), we have
with x = 10 as a function of wavenumbers (a) (ai,ar), (b) (ai,b),
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solved the eight-order system of equations, and the

branch points are found for the viscous solution. The

Briggs [25] criterion has been employed with fixed

parameters b and R to distinguish between absolutely

and convectively unstable flows.

Fig. 10 shows the parameter range of neutral abso-

lute instability in the (R,ar), (R,ai), (R,b), (R,xr), and

(R,c) planes for different values of �. Inside the curves,
Fig. 10. Neutral absolute instability curves in (a) (R,ar), (b) (R,ai), (

wave-angle planes for different values of �.
the imaginary part of the frequency x is positive and

thus the particular flow there is absolutely unstable.

Outside the curves, the flow becomes convectively unsta-

ble. Table 10 displays the computed values of the critical

Reynolds number R, corresponding critical wavenum-

bers a, b, frequency x, and wave-angle c when different

value of viscosity variation parameter � are taken into

account. Table 10 shows that as � increases, the critical
c) (R,b), (d) (R,xr), and (e) (R,c) wavenumber, frequency, and



Table 10

Critical values of R, a, b, xr, and c corresponding to different

values of � for the absolute instability curves

� R ar ai b xr c

0 507.0 0.216 �0.121 0.134 �17.27 31.50

0.01 423.0 0.220 �0.118 0.135 �14.60 31.52

0.02 341.0 0.226 �0.113 0.138 �12.01 31.53

0.03 275.1 0.239 �0.107 0.147 �10.58 31.54
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Reynolds number R for the onset of absolute instability

decreases such that the absolutely unstable region in-

creases. For � = 0, the eigenvalues we obtain agree quite

well with those derived earlier by TG and Lingwood

[23]. The flows become much more absolutely unstable

as the viscosity variation parameter � increases.
4. Conclusions

The influence of temperature dependent viscosity on

a rotating disk in a rigidly rotating fluid have been inves-

tigated using linear stability theory. The primary flow is

affected through the variation of viscosity with tempera-

ture. The stability parameters for the stationary and

non-stationary waves are computed.

Using a spectral method, stability diagrams are pro-

duced for different values of the viscosity variation

parameter � with the Prandtl number taken equal to

0.72 (suitable for air). Neutral stability curves are

sketched for various real frequencies and several values

of the viscosity variation parameter �. The region en-

closed by these curves is shown to be convectively unsta-

ble. Positive frequency causes the critical Reynolds

number for the onset of convective instability on the

lower branch to decrease and that on the upper branch

to increase. Increase in the viscosity variation parameter

� leads to decrease in the critical Reynolds number for

both branches. Since the viscosity is more sensitive to

temperature as � increases, the rotating-disk flow is

much more unstable.

We have also investigated the absolute instability

with several values of e. A linear stability analysis has

been performed including viscous, Coriolis and stream-

line curvature effects. A branch of the dispersion relation

has been shown to meet the upper branch at a pinch-

point with positive xi. Neutral stability curves are pre-

sented which display the absolute unstable, convective

unstable and stable regions for several values of �. All

the curves inside the loop signify absolute instability,

while outside convective stability/instability. It is signif-

icant to note that as � is increased, the critical value of

the Reynolds number for absolute instability decreases

and the flow becomes increasingly unstable. We have

shown also that for the convectively unstable modes,
stationary waves have larger growth rates as compared

to the non-stationary waves for large Reynolds

numbers.

Although the non-parallel approximation has been

used in the stability analysis, the behaviour of the stabil-

ity loops for increasing � suggests that non-parallel ef-

fects will be important for � > 0. The low values of the

critical Reynolds numbers obtained in this study for �
increasing may invalidate the earlier large Reynolds

number assumptions made in obtaining the stability

equations. This however, requires a study of the full line-

arized unsteady Navier–Stokes equation, which is be-

yond the scope of the present paper.

In many experiments on cross-flow instability the

variation of viscosity with temperature is usually ne-

glected. Our results demonstrate the results can be par-

ticularly sensitive to very small changes in viscosity

with temperature.
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